Redox modulation of human prostate carcinoma cells by selenite increases radiation-induced cell killing.

نویسندگان

  • Bryan Husbeck
  • Donna M Peehl
  • Susan J Knox
چکیده

Although selenium compounds have been extensively studied as chemopreventative agents for prostate cancer, little is known about the potential use of selenium compounds for chemotherapy. We have shown that selenite inhibits cell growth and induces apoptosis in androgen-dependent LAPC-4 prostate cancer cells. LAPC-4 cells were more sensitive to selenite-induced apoptosis than primary cultures of normal prostate cells. Selenite-induced apoptosis in LAPC-4 cells correlated with a decrease in the Bcl-2:Bax expression ratio. Selenite-induced oxidative stress and apoptosis are dependent upon its reaction with reduced GSH. LAPC-4 cells treated with selenite showed decreased levels of total GSH and increased concentrations of GSSG. Thus, selenite altered the intracellular redox status toward an oxidative state by decreasing the ratio of GSH:GSSG. Because increased levels of Bcl-2 and GSH are associated with radioresistance, we examined the ability of selenite to sensitize prostate cancer cells to gamma-irradiation. Both LAPC-4 and androgen-independent DU 145 cells pretreated with selenite showed increased sensitivity to gamma-irradiation as measured by clonogenic survival assays. Importantly, selenite-induced radiosensitization was observed in combination with a clinically relevant dose of 2 Gy. These data suggest that altering the redox environment of prostate cancer cells with selenite increases the apoptotic potential and sensitizes them to radiation-induced cell killing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Prolonged Fraction Delivery Time Modelling Stereotactic Body Radiation Therapy with High Dose Hypofractionation on the Killing of Cultured ACHN Renal Cell Carcinoma Cell Line

Introduction: Stereotactic body radiotherapy delivers hypofractionated irradiation with high dose per fraction through complex treatment techniques. The increased complexity leads to longer dose delivery times for each fraction. The purpose of this study is to investigate the impact of prolonged fraction delivery time with high-dose hypofractionation on the killing of cultured ACHN cells.Method...

متن کامل

Evaluation of Silibinin effects on the Viability of HepG2 (Human hepatocellular liver carcinoma) and HUVEC (Human Umbilical Vein Endothelial) cell lines

Human hepatocellular carcinoma is one of the most common recurrent malignancies, for as much as, there is no effective therapy. Silibinin, a widely used drug and supplement for various liver disorders, demonstrated anticancer effects against human hepatocellular carcinoma, human prostate adenocarcinoma cells, human breast carcinoma cells, human ectocervical carcinoma cells, and human colon canc...

متن کامل

Evaluation of Silibinin effects on the Viability of HepG2 (Human hepatocellular liver carcinoma) and HUVEC (Human Umbilical Vein Endothelial) cell lines

Human hepatocellular carcinoma is one of the most common recurrent malignancies, for as much as, there is no effective therapy. Silibinin, a widely used drug and supplement for various liver disorders, demonstrated anticancer effects against human hepatocellular carcinoma, human prostate adenocarcinoma cells, human breast carcinoma cells, human ectocervical carcinoma cells, and human colon canc...

متن کامل

The role of Rad51 protein in radioresistance of spheroid model of DU145 prostate carcinoma cell line

Background: Rad51 is a protein with critical role in double strand break repair. Down-regulation of this protein has a significant effect in radiosensitivity of some cell lines like prostate carcinoma. Compared to monolayer cell culture model, the spheroids are more resistant to radiation. The aim of the current study was to determine the Rad51 protein level in DU145 spheroids, and monol...

متن کامل

Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing

Radiation therapy (RT) is used for local tumor control through direct killing of tumor cells. Radiation-induced cell death can trigger tumor antigen-specific immune responses, but these are often noncurative. Radiation has been demonstrated to induce immunogenic modulation (IM) in various tumor types by altering the biology of surviving cells to render them more susceptible to T cell-mediated k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Free radical biology & medicine

دوره 38 1  شماره 

صفحات  -

تاریخ انتشار 2005